
KEC75H (.040" x .020")

♦ KEC75H Capacitance Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC
0.1	0R1			2.0	2R0	А,В,	50V Code 500 or 200V Code 201 or 250V Code	10	100	F,G,	
0.2	0R2		50V Code 500	2.1	2R1			11	110		
0.3	0R3			2.2	2R2			12	120		50V Code 500 or 200V Code
0.4	0R4			2.4	2R4			13	130		
0.5	0R5			2.7	2R7			15	150		
0.6	0R6			3.0	3R0			16	160		
0.7	0R7			3.3	3R3	C,D	251	18	180		
0.8	0R8		or	3.6	3R6		50V Code 500 or 200V	20	200		201
0.9	0R9	A,B,	200V Code 201 or 250V Code 251	3.9	3R9			22	220		
1.0	1R0	C,D		4.3	4R3			24	240		
1.1	1R1			4.7	4R7			27	270		
1.2	1R2			5.1	5R1			30	300		50V
1.3	1R3			5.6	5R6			33	330		Code 500
1.4	1R4			6.2	6R2						
1.5	1R5			6.8	6R8	A,B,	Code				
1.6	1R6			7.5	7R5		201				
1.7	1R7			8.2	8R2						
1.8	1R8			9.1	9R1						
1.9	1R9										

Remark: special capacitance, tolerance and WVDC are available, consult with Kete.

◆Part Numbering

♦KEC75H Chip Dimensions

unit:inch(millimeter)

Series	Term. Code	Type / Outlines		Distri			
			Length (Lc)	Width (Wc)	Thickness (Tc)	Overlap (B)	Plated Material
KEC70H	w	Te Chip	.040±.004 (1.02±0.10)	$.020 \pm .004$ (0.51 ± 0.10)	$.020 \pm .004$ (0.51 ± 0.10)	.010±.006 (0.25±0.15)	Sn/Ni (RoHS)

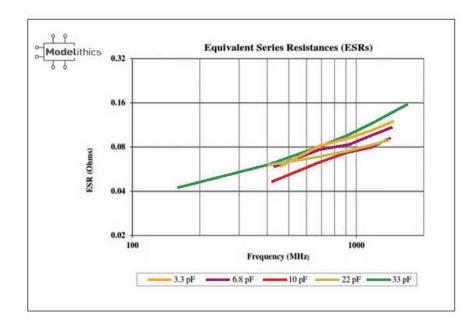
◆ Design Kits

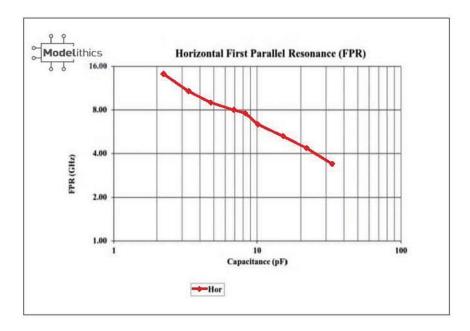
These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kit	Description (pF)	Values (pF)	Tolerance
DKKEC75H01	0.1 - 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0	± 0.10pF
DKKEC75H02	1.0 - 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2	±0.10pF
DKKLC/31102	1.0 - 10	10	±5%
DKKEC75H03	10 - 33	10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33	±5%

◆ Performance

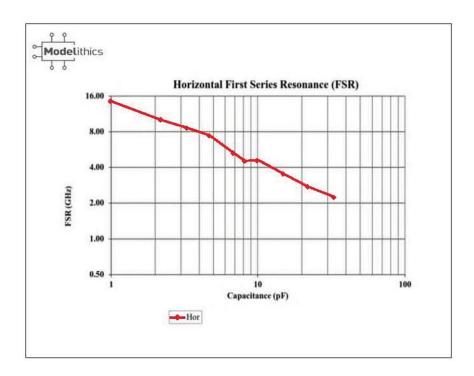
Item	Specifications		
Quality Factor (Q)	2,000 min.		
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC. 10 ⁴ Megohms min. @ +125 °C at rated WVDC.		
Rated Voltage	See capacitance table		
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.		
Operating Temperature Range	-55℃ to +175℃		
Temperature Coefficient (TC)	0±30ppm/°C		
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.		
Piezoelectric Effects	None		




♦Environmental Tests

Item	Specifications	Method			
Terminal	Termination should not pull off.	Linear pull force exerted on axial leads soldered to			
Adhesion	Ceramic should remain undamaged.	each terminal. 2.0lbs.			
	No mechanical damage				
Resistance	Capacitance change: $-1.0\% \sim +2.0\%$	Preheat device to 150°C-180°C for 60 sec.			
to soldering heat	Q>500	Dip in 260°±5°C solder for 10±1 sec.			
_	I.R. >10 G Ohms	Measure after 24±2 hours cooling period.			
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage	MIL-STD-202, Method 107, Condition A.			
	Capacitance change:±0.5% or 0.5pF max	At the maximum rated temperature (-55°C and 125°C			
Thermal	Q>2000	stay 30 minutes.			
Shock	I.R. >10 G Ohms	The time of removing shall not be more than 3 minutes			
	Breakdown voltage: 2.5 x WVDC	Perform the five cycles.			
	No mechanical damage				
770.00 (AA.A.)	Capacitance change: $\pm 0.5\%$ or 0.5 pF max.	MIL-STD-202, Method 106.			
Humidity, Steady State	Q>300				
Steady State	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage				
Y X7.1,	Capacitance change: $\pm 0.3\%$ or $0.3 pF$ max.	MIL-STD-202, Method 103, Condition A, with 1.5 Vo D.C. applied while subjected to an environment of 85 with 85% relative humidity for 240 hours minimum.			
Low Voltage Humidity	Q>300				
*	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage				
	Capacitance change: $\pm 2.0\%$ or 0.5pF max.	MIL-STD-202, Method 108, for 1000 hours, at 125°C 200% Rated voltage D.C. applied.			
Life	Q>500				
	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				

♦ KEC75H Performance Curve



The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in [S21]. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the electrode planes are parallel to the substrate.

♦ KEC75H Performance Curve

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.48; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 15; microstrip trace width (mils) = 22; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by KEC. The models are derived from measurements on a large number of parts disposed on several different substrates.